Wednesday, November 2, 2011

Sums And Products of Roots


While tutoring a friend on sums and products of roots of equations, I came upon an interesting result.  It began with a few formulas to help with common questions such as:
      1 / α + 1 / β = (α + β) / αβ = (-b / a) / (c / a)
                                                = -b / c
      α2 + β2 = (α + β)2 - 2αβ
                   = (-b / a)2 - 2c / a
                   = (b2 - 2ac) / a2

      and finally:
      αβ2 + α2β = αβ(α + β)        = c / a * (-b / a)
                                                  = -bc / a2

From this I started manipulating a few others until I came to this:

                                 (α - β)2 = α2 - 2αβ + β2
                                              = (α2 + β2) - 2αβ
                                              = (b2 - 2ac) / a2 - 2c / a
                                              = (b2 - 4ac) / a2
                                     α - β = ±√((b2 - 4ac) / a2)
                                              = (±√(b2 - 4ac) / a
                      α - β + (α + β) = (±√(b2 - 4ac) / a) + (-b / a)
                                         2α = (-b ±√(b2 - 4ac)) / a
                                           α = (-b ±√(b2 - 4ac)) / 2a

Look familiar?
Yep, the quadratic formula!  Too easy.

No comments:

Post a Comment