Saturday, November 19, 2011

The Angle Sum Problem: Solved



       I have found another method of proving the sum of that does not utilize properties of parallel lines!  This proof however, does not rely on the  sum of  being constant as my previous work on "The Angle Sum Problem" did, rather it proves that the of a  are supplementary for a general case, thus proving it for all cases.  Consider the following  (the line MM' intersects the perpendicular height and two non-base sides, through their midpoints).







Fig. 9 Scalene Triangle

        By separation of horizontal and vertical vectors, we can assume midpoints lie at the same height.
                  Let the Midpoint of AD be H
                  In AHM' and DHM'
                  AH = HD (by definition of midpoint)
                  HM' is common
                  AHM' = 90 (given)
                  DHM' = 180 - AHM' (supp s on a straight line AD)
                             = 90
                 DHM' = AHM'
                  AHM'  DHM' (SAS)
                 AHM  DHM (similarly)
                 AMM'  DMM'
                  MDM' = MAM' (corr s in congruent s)
                 MDB = MBD (base s in isos )
                 M'DC = M'CD (similarly)
                 MDM' + MDB + M'DC = 180 (supp s on straight line
                                                                               BC)
                  BAC' + ABD + ACB = 180 (equal s as proven above)
                  sum of = 180

         The basis of this proof is that, if you take each corner of any
  and fold them to the point where any interior perpendicular height meets its base; the angles will fit together on the base, a straight line that must form 180 degrees.




No comments:

Post a Comment