Tuesday, November 29, 2011

Curiouser and Curiouser


         Continuing my work on paradoxes, I did some research and found a paradox that I couldn't explain.  From this I obtained a general form for the paradox in which, when multiplication is reduced to a series of additions, the process of differentiation breaks down and we obtain two different answers.  To elaborate, I provide the general form for any polynomial in x here:

          C.xn + ... = C. xn - 1(a + a + ... + r) + ...  (where r is the remainder of x / a)  ---(1)
          d(C.xn + ...) / dx = C.nxn - 1 + ...                                                                                ---(2)
            d(C.xn + ...) / dx = C(n - 1) xn - 2(a + a + ... + r) + C.xn - 1(0) + ...    (from (1))
                                            = C(n - 1)xn - 2(x) + 0 + ...
                                            = C(n - 1)xn - 1 + ...                                                                           ---(3)
                                         n = n - 1                                                (from (2) & (3))     ---(4)
          The logic behind this is that xn is a shorthand expression for x.x.x, x times, which is shorthand for x + x + ..., x times x times x times ... and lastly, any number x is shorthand for a + a + a + ... + r (where r is the remainder when x is divided by a), e.g. We could say the number '23' is short hand for 4 + 4 + 4 + 4 + 4 + 3.

        As an illustration, the original paradox was given as:
                            x2 = x + x + x + ...    (x times)
                   dx2 / dx = 2x
                   dx2 / dx = 1 + 1 + 1 + ...
                                 = x
                            2x = x      (dividing by x)
                              2 = 1
      Here C = 1, n = 2, a = 1, and r = 0.  The final expression is:
           1.2x2 - 1 = 1(2 - 1)x2 - 1 
                  2x = x, and so on
          OR from (4)
                    2 = 2 - 1
                    2 = 1

No comments:

Post a Comment